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1.0 Introduction

The term plasma antenna has been applied to a wide variety of antenna concepts that incorporate

some use of an ionized medium.  In the vast majority of approaches, the plasma, or ionized

volume, simply replaces a solid conductor.  A highly ionized plasma is essentially a good

conductor, and therefore plasma filaments can serve as transmission line elements for guiding

waves, or antenna surfaces for radiation.  The concept is not new.  A patent entitled “Aerial

Conductor for Wireless Signaling and Other Purposes” was awarded to J. Hettinger in 1919

(Figure 1).

Figure 1: Diagram from J. Hettinger’s 1919 patent [From 1].
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The advantages of such an approach are numerous.  For example, the length of an ionized

filament can be changed rapidly, thereby “re-tuning” the antenna to a new frequency1.  The

antenna can be “turned off” to make it electrically invisible for the purpose of reducing its

scattering signature and eliminating its coupling and interference with other nearby antennas.  On

the other hand, the use of plasma adds complexity to the antenna design.  Equipment for

establishing and maintaining the ionization must be provided.  There is a glow to the plasma that

increases its visible signature, and plasma decay generates noise.

The ionized volume can take a variety of forms.  It can be established in air at

atmospheric pressure by using lasers, high power microwave beams, or ultraviolet rays.  A

plasma might also be generated from a gas filled tube containing a noble gas like neon or argon.

Methods that use a tube require less energy to excite and maintain the plasma state, because the

gas is pure and the presence of the tube prevents dissipation.  The use of a tube requires that it be

protected from the environment, which increases the antenna weight and volume, and makes the

antenna less durable.

This report describes the basic underlying plasma theory, examines methods of exciting

and confining plasmas, and summarizes antenna concepts that incorporate plasmas.

2.0 Fundamental Plasma Theory

A plasma can be generated from neutral molecules that are separated into negative electrons and

positive ions by an ionization process (e.g., laser heating or spark discharge). The positive ions

and neutral particles are much heavier than the electrons, and therefore the electrons can be

considered as moving through a continuous stationary fluid of ions and neutrals with some

viscous friction.  Furthermore, the propagation characteristics of electromagnetic (EM) waves in

a uniform ionized medium can be inferred from the equation of motion of a single “typical”

electron.  Such a medium is called a “cold plasma.”  This model would be rigorous if the ionized

medium was comprised entirely of electrons that do not interact with the background particles

(neutrals and ions) and posses thermal speeds that are negligible with respect to the phase

velocity of the EM wave.

                                                
1 In recent years, antennas with the ability to change their radiation characteristics by modifying their physical or
electrical configuration have been called “re-configurable antennas.”
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In the absence of a magnetic field, the important parameters for a cold plasma are the

electron density eN  electrons/m3 and the collision frequency ν  /m3.  The complex relative

dielectric constant of the plasma is given by [2-5]

( ) ( )νωω

ω
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fπω 2=  radians/sec, angular frequency

31100.9 −×=m  kg, electron mass

191059.1 −×=e  C, electron charge

121085.8 −×=oε F/m, permittivity of free space

Assuming a time harmonic wave with an tje ω  time dependence, a x-polarized

electromagnetic plane wave propagating in the +z direction has the form

z
oeExzE γ−= ˆ)(

r

where γ  is the conventionally defined propagation constant.  The real and imaginary parts of the

propagation constant are the attenuation and phase constants, respectively,

rrojkj εµβαγ =+≡ (2)

where oook εµω= , 12104 −×= πµo H/m is the permeability of free space, and for the

plasmas considered here 1=rµ .
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For the special case of negligible collisions, 0≈ν , the corresponding propagation

constant  is

Xjkjk o
p

o −=−= 11 2

2

ω

ω
γ (3)

There are three special cases of interest:

1. pωω > :  γ  is imaginary and zje β−  is a propagating wave

2. pωω < :  γ  is real and ze α−  is an evanescent wave

3. pωω = :  0=γ  and this value of ω  is called the critical frequency, cω  which defines the

boundary between propagation and attenuation of the EM wave.

The intrinsic impedance of the plasma medium is

)( εεε
µ

η
′′−′

=
jo

o (4)

Figure 2 shows the magnitude of the reflection coefficient at an infinite plane boundary between

plasma and free space, which is given by the formula

o

o
ηη
ηη

+
−

=Γ (5)

The impedance of free space is 377=oη ohms.  From the figure it is evident that at frequencies

below the plasma frequency, the plasma is a good reflector.
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Figure 2: Reflection coefficient for a plane wave normally incident on a sharp plasma/air

boundary ( 12101 −×=eN /m3, 0=ν , dashed line is the plasma frequency, fp = 56.4 MHz).

EM waves below the plasma frequency ( pωω < ) are attenuated at a rate determined by

the attenuation constant

( )1exp~)( −−=− XzkezE o
zα . (6)

The loss in decibels per meter (dB/m) is

( ){ }1explog20 10 −− Xko .  (7)

Loss is plotted in Figure 3 for several electron densities.  This shows that plasma can be a good

absorber once the EM wave enters the plasma medium, a feature that has been exploited in the

design of plasma radar absorbing material (RAM) for stealth applications [6].
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Figure 3: Loss in dB/m below the plasma frequency for several electron densities ( 0=ν ).

For a neutral plasma the positive and negative charges are uniformly distributed, so that

on a macroscopic scale it is electrically neutral.  Plasma oscillations (or space-charge

oscillations) can arise when a disturbance causes a displacement of the charges, which sets up an

electric field that acts to restore them to their equilibrium positions.  However, inertia carries the

charges back past their neutral positions and an opposite electric field is set up.  In the absence of

collisions (damping) the back and forth plasma oscillations continue indefinitely.

Plasma oscillations generally do not propagate in a cold plasma unless it (1) has a drift

velocity, or (2) is finite and has normal modes that arise from boundary conditions.  An example

of the second case is a plasma column having a sharp boundary with a vacuum or dielectric. In

addition to modifying the EM wave, a longitudinal wave arises, analogous to a sound wave in

non-ionized gas. These waves are variously referred to as plasma, electrostatic, space-charge, or

electro-acoustical waves.

In a “warm plasma” the electron thermal velocity cannot be ignored, but non-relativistic

mechanics still apply.  The spatial variations (gradients) in temperature and density over a
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wavelength drive the particle currents, along with the electric field of the EM wave passing

through. Generally, for antenna applications, a cold plasma can be assumed.

When a magnetic field or density gradient is present, space-charge waves may couple to

EM waves.  Electrons with thermal speeds close to the phase velocity of the EM wave can

exchange energy with the wave by the processes of Landau damping and Cerenkov radiation.

These processes are exploited in some commonly used devices such as linear accelerators and

traveling-wave tubes.

3.0 Plasma Generation and Containment

For antenna applications the plasma must be maintained in precise spatial distributions, such as

filaments, columns, or sheets.  The plasma volume can be contained in an enclosure (tube) or

suspended in free space.  Compositions that may be used to form plasma in a tube include gases

of neon, xenon, argon, krypton, hydrogen, helium, and mercury vapor.  Energizing the plasma

can be accomplished with electrodes, fiber optics, microwave signals, lasers, RF heating, or

electromagnetic couplers.  The tube confines the gas and prevents diffusion.  The radiation

pattern is controlled by parameters such as plasma density, tube shape, and current distribution.

Some examples are shown in Figure 4.

Figure 4: Examples of a plasma loop and reflector antenna using tubes [From 7].

The degree of ionization of a gas is given as a percentage

100×
+ oe

e
NN

N

where oN  is the density of neutral molecules.  For example, a standard fluorescent tube has an

ionization of about 510−  with 316 cm/10≈oN  and 311 cm/10≈eN .  The conductivity of a gas
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reaches half of its maximum at about 0.1% ionization, and essentially has its maximum value at

1% ionization (i.e., the conductivity at 1% ionization is nearly the same as at 100% ionization).

Strong ionization refers to values on the order of 410− and greater [5].

A conventional tube has the disadvantage of requiring two or more contacts (electrodes)

for applying the ionizing potential.  As an alternative, a surface wave can be used to excite the

plasma from a single end.  The surface space-charge wave 2 is electro-mechanical in nature.  A

time-harmonic axial electric field is applied a one end of the plasma column.  Charges are

displaced and restoring electric fields are set up in response to the applied field.  The charges

remain balanced in the interior of the plasma, but the electric field causes a deformation of the

plasma surface that results in a surface charge layer as shown in Figure 5 [9].  The coaxial device

that has been developed to ionize a plasma column based on this principle is the Surfatron, which

will be discussed in more detail later.

Figure 5: Distribution of the charges and fields for a surface space-charge wave [From 9].

Other types of surface wave launching methods have been developed that are more

compact than the Surfatron.  One of them is by means of a helicon wave [11, 12].  Helicon waves

are a type of whistler wave, which are circularly polarized and require the presence of a magnetic

field.  For a cylinder, the magnetic field is axial and the helicon waves are modes of the bounded

system. Helicon excitation is generally more complicated than surface wave excitation, but can

be applied to electrically short columns, and thus results in more compact hardware at low

frequencies.

                                                
2 This wave has also been called a “surface polariton” [8].
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Figure 6: Linear plasma antenna excited at one end by a surface wave [From 10].

Plasma surfaces can be suspended in free space to serve as antenna elements.  Ionizing a

trail in the atmosphere requires special techniques [13, 14]. High ionization concentrations

absorb laser energy, and at some point the ionization tail becomes opaque, thereby limiting the

length.  Several proposed methods use a laser beam (usually pulsed) to establish a low ionization

path, and then subsequent power is applied to achieve intense ionization.  Densities of 319 cm/10

have been predicted, resulting in a conductivity of a few ohms per meter.

An ionization path in air suffers beam wander due to fluctuations in temperature, density,

and wind along its length.  It is necessary to frequently extinguish the path and re-establish one

that is straight and concentrated.  This is one advantage of using a pulsed laser, another being the

higher peak power that is achievable over a continuous wave (CW) laser.

Two important parameters of a plasma antenna are the time required for complete

ionization, and the decay time once the excitation is removed. The latter is determined by

recombination processes, the most important of which is an electron attaching itself to a positive

ion to form a neutral molecule.  Typical decay times are on the order of tens to hundreds of

microseconds.
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4.0 Antenna and Transmission Line Applications

This section describes several antenna and transmission line concepts that incorporate plasmas.

4.1 Plasma Mirrors (Reflectors) and Lenses

Figures 7 and 8 depict reflector antennas that use a plasma sheet in place of a solid conductor as

the reflecting surface [15, 16].  The reflections actually occur within the plasma, not at an abrupt

interface as they do for a metal reflector.  For the purpose of ray tracing the reflection is

considered to occur at a “critical surface” that lies somewhere inside of the plasma (similar to the

virtual reflection point when tracing rays through the ionosphere). The advantages of these

antennas are rapid inertia-less two-dimensional scanning, frequency selectivity by setting the

plasma parameters, and potential wideband frequency performance.

In one approach, a laser beam and optics generate a reflecting surface by using a

sequence of line discharges that diffuse together to form a sheet of plasma.  Curvature can be

obtained in one dimension (i.e., a singly curved reflector).

A high quality plasma reflector must have a critical surface that can be consistently

reproduced and is stable over the transmission times of interest. When the plasma is turned off,

its decay time will limit how fast the reflecting surface can be moved.  Turn-on and turn-off

times of 10 microseconds have been achieved [17].

Above the plasma frequency, its shape and dielectric properties can be designed to act as

a lens.  For example, a column with circular cross section and varying radial electron density can

be used to scan a beam passing through it.  This concept has been demonstrated using a helicon

wave to excite the plasma.  The frequency of the deflected beam was 36 GHz, the peak density

approximately 18107 ×  /m3, and the insertion loss ~2.0 dB.  The sweep time for a 30 degree scan

was 200 microseconds, which was limited by the decay rate of the plasma [18].

Figure 10 shows a comparison of radiation patterns from plasma and metal reflector

antennas.  The plasma antenna shows lower sidelobes, especially at wide angles, due to its higher

surface resistivity compared to a solid conductor [20].
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Figure 9: Plasma reflector [From 7].

Figure 10: Comparison of radiation patterns from plasma (blue/dots) and metal (red) reflectors
[From 19].
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4.2 Linear and Loop Antennas With Plasma Enclosures

The first plasma antenna concepts were essentially linear antennas with conductors replaced by

plasmas.  The basic concept is illustrated in Figure 11 for a loop-shaped antenna [21]. The gas

can be ionized using electrodes with sufficient voltage, or by using an EM field to excite the gas.

4.2.1 Ionization Using Electrodes

Figures 11 and 12 show two of the many designs that incorporate closed tubes of gas excited by

voltages applied to electrodes.  Figure 12 is reconfigurable in that one or more plasma paths can

be excited.  Different paths would be used in different frequency bands.  The gas contained in a

tube can be ionized by lasers or high power microwave beams, as illustrated in Figure 13.

Figure 11: Loop antenna [From 21].
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Figure 12: Antenna that can be reconfigured by selecting one of multiple plasma paths (dashed
lines) [From 21].

Figure 13: Ionization of a tube of gas (“LOAD”) using standoff lasers [From 22].
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4.2.2 Ionization Using an Electromagnetic Field

It is desirable to have only a single electrode in order to minimize the scattering and interference

of the antenna feed and support structure with the radiated or received EM field.  A surface wave

can be used to excite a tube of gas from one end, as shown in Figure 14.  The electric field in the

gap excites a surface space-charge wave that propagates down the walls of the tube and

eventually ionizes the gas inside. Figure 15 shows a HF monopole that incorporates surface wave

excitation.  The noise has been shown to be comparable to that of a metal antenna, as shown in

the plots of Figure 16.  The noise generated by a plasma has been analyzed in [25].

 

Figure 14: The Surfatron feed. Left: operational principle. Right: hardware implementation
[From 23].

2.2 m

Matching
box

ƒ = 20–40 MHz

Transceiver
(50-200 W)

Shock
absorbing

rings

Dielectric
tube

Coupling
sleeve

Mounting
plate

fsignal =  20 - 40 MHz

   

No electrodeNo electrode

Match BoxMatch Box

3030 MHz MHz, ~100 W , ~100 W 
Excitation on sleeveExcitation on sleeve
electrodeelectrodeInputInput reflectometer reflectometer,,

antennaantenna
and voltage signalsand voltage signals

Figure 15: An operational HF monopole with surface wave excitation [From 10].
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Figure 16: Comparison of the noise spectra for a surface wave driven plasma antenna and a metal
antenna.  The vertical scale is in dB [From 24].

4.3 Linear Antennas and Transmission Lines by Ionizing the Atmosphere

Linear plasma filaments can be generated by ionizing the atmosphere. As discussed previously,

when trying to establish a highly ionized path from the source, the problem of opacity due to

absorption occurs.  There are two approaches that avoid this problem.  One is to ionize a path

using multiple lasers sequentially focussed to points in space (Figure 17).  The second approach,

illustrated in Figure 18, uses a laser (usually pulsed) to establish a low ionization path, and then

subsequent power is applied to achieve intense ionization over the entire path.

Early patents proposed using ionized paths in the atmosphere for information

transmission (i.e., as transmission lines) or discharging clouds to prevent lightning strikes. Figure

19 shows one proposed concept for discharging a cloud.  Parallel paths could be used as a two-

wire transmission line, or a surface wave mode could be used with a single ionized path.

10      15      20      25      30 
Frequency (MHz) 
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Figure 17: Ionization of a path in the atmosphere using multiple lasers sequentially focussed to
points in space [From 26].

Figure 18: Multiple stage ionization of an atmospheric path using a laser [From 27].

4.4  Plasma Radiation

Several proposed antenna concepts use the plasma space-charge waves to couple to the EM

wave.  In Figure 20(a) blocks 15 and 20 represent oppositely directed lasers that are fired

alternately.  Each time the laser is fired, a pulse train is transmitted.  The resonant frequency of

the plasma in the tube is the transmit frequency.  As depicted in Figure 20(b), the oppositely

directed photon beams produce an alternating electric current in the plasma that radiates.
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Figure 19: Method of discharging a cloud using a conductive path from a laser [From 27].

  
(a)      (b)

Figure 20: Plasma antenna with currents generated by opposed photon beams.  (a) System block
diagram, and (b) alternating current vectors due to the interaction of the oppositely directed laser
beams. [From 28].

Figure 21 shows a plasma antenna with multiple tubes.  Various possible tube

configurations and combinations of external magnetic fields, temperature gradients, and electric

potentials can be used to change the shape and density of the plasma, allowing it to radiate with

the desired gain and radiation pattern [29].
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Figure 21: Multiple tube plasma antenna. Points 16 are electrodes; 14 and 12 are tube walls
[From 29].

5.0 Microwave Devices

5.1 Filters and Phase Shifters

One of the first proposed applications for plasmas was a microwave band pass filter [30].  Figure

22(a) shows one possible technique, where the plasma column is either transparent, and the input

signal is dissipated in the load, or reflective, allowing the input signal to return to the circulator

and exit the device.  Therefore, by changing the plasma parameters, and hence the plasma

frequency, the pass band of the filter can be modified.

A second design is shown in Figure 22(b). A plasma operating near resonance generates

azimuthal and radial components parallel to the probe.  Away from resonance there are no field

components parallel to the pickup probe.

Variants of these two circuits can also serve as phase shifters.  For the method in Figure

22(a) multiple plasma columns could be inserted in one arm so that reflection from, or

transmission through, each plasma column is possible.  Variable time delay can be obtained by

switching in different numbers of segments between the plasma columns.

FIG-   1 
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(a) (b)

Figure 22: Two bandpass filter techniques using plasmas [From 30].

Plasma switches have been used extensively for duplexing in radar, i.e., to switch out high power

transmitters during receive.  They are configured similar to Figure 21(a).

5.2 Microwave Tubes

The presence of a controlled amount of plasma in traveling-wave tubes and backward-wave

oscillators can lead to improvement in their operating characteristics above those of evacuated

devices.  Specifically, the bandwidth and power handling capability can be increased [31].

6.0 Summary

The operational principles of plasma antennas have been known for decades. Table 1 is partial

listing of some potential advantages and disadvantages of plasma antennas.  As evident from

previous sections, there is a wide range of plasma antenna concepts, and not all approaches have

every advantage or disadvantage listed in the table.

The continuing advances in lasers, tubes, solid state electronics, and signal processing

capabilities, have made many of the simpler plasma concepts realizable. There are many patents

dealing with the subject; many of them are included in this report as references or in the

bibliography.  Only a small number of them have been demonstrated in hardware and most only

under ideal laboratory conditions. Each design generation represents an improvement in

performance, reduction in size and weight, and increase in efficiency.  The performance of the
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HF communications antenna described in reference [10] is comparable to conventional metal

antennas.

In the distant future, plasma-type antennas are possibly the ultimate answer in the search

for the “ideal” antenna, especially for platforms comprised of non-conducting composite

materials.  Depending on the antenna system’s function, a plasma antenna of any desired size,

shape, and operational frequency band would be excited at the optimal location on the platform.

When the system is not in use the antenna simply disappears, until next required by the system.

Table 1: A list of some important plasma antenna attributes and their advantages and
disadvantages.

Property Advantages Disadvantages/Limitations
“Turn-on/turn-off” • Reduced RCS

• Reduced interference and
ringing

• Ionization and decay times limit
scanning

Re-configurable • Change shape to control pattern
and bandwidth

• Change plasma parameters

• Plasma volumes must be stable
and repeatable

Plasma generator
(Ionizer)

• Glow discharge increases

visible signature *

• Good RF coupling for
electrically small antennas

• Frequency selectivity

• Ionizer adds weight and volume
• Ionizer increases power

consumption

Confined plasma
(tubes)

• Stable and repeatable
• Efficient

• Not durable or flexible

Atmospheric path • Flexibility in length and
direction of path

• Higher ionization energy than
for a tube

*It may be possible to reduce the visible signature by enclosing the plasma in an opaque structure.
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